Multi-Resolution Fully Convolutional Neural Networks for Monaural Audio Source Separation

نویسندگان

  • Emad M. Grais
  • Hagen Wierstorf
  • Dominic Ward
  • Mark D. Plumbley
چکیده

In deep neural networks with convolutional layers, each layer typically has fixed-size/single-resolution receptive field (RF). Convolutional layers with a large RF capture global information from the input features, while layers with small RF size capture local details with high resolution from the input features. In this work, we introduce novel deep multi-resolution fully convolutional neural networks (MR-FCNN), where each layer has different RF sizes to extract multi-resolution features that capture the global and local details information from its input features. The proposed MR-FCNN is applied to separate a target audio source from a mixture of many audio sources. Experimental results show that using MR-FCNN improves the performance compared to feedforward deep neural networks (DNNs) and single resolution deep fully convolutional neural networks (FCNNs) on the audio source separation problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Raw Multi-Channel Audio Source Separation using Multi-Resolution Convolutional Auto-Encoders

Supervised multi-channel audio source separation requires extracting useful spectral, temporal, and spatial features from the mixed signals. The success of many existing systems is therefore largely dependent on the choice of features used for training. In this work, we introduce a novel multi-channel, multiresolution convolutional auto-encoder neural network that works on raw time-domain signa...

متن کامل

Monoaural Audio Source Separation Using Deep Convolutional Neural Networks

In this paper we introduce a low-latency monaural source separation framework using a Convolutional Neural Network (CNN). We use a CNN to estimate time-frequency soft masks which are applied for source separation. We evaluate the performance of the neural network on a database comprising of musical mixtures of three instruments: voice, drums, bass as well as other instruments which vary from so...

متن کامل

Monaural Score-Informed Source Separation for Classical Music Using Convolutional Neural Networks

Score information has been shown to improve music source separation when included into non-negative matrix factorization (NMF) frameworks. Recently, deep learning approaches have outperformed NMF methods in terms of separation quality and processing time, and there is scope to extend them with score information. In this paper, we propose a score-informed separation system for classical music th...

متن کامل

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

Deep Transform: Cocktail Party Source Separation via Complex Convolution in a Deep Neural Network

Convolutional deep neural networks (DNN) are state of the art in many engineering problems but have not yet addressed the issue of how to deal with complex spectrograms. Here, we use circular statistics to provide a convenient probabilistic estimate of spectrogram phase in a complex convolutional DNN. In a typical cocktail party source separation scenario, we trained a convolutional DNN to re-s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.11473  شماره 

صفحات  -

تاریخ انتشار 2017